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Parameter Estimation

Given: independent samples xy, x2, ..., X from
a parametric distribution f(x\@)\

Not formally “conditional probability,”

Goa,: estimate 9 but the notation is convenient...

E.g.: Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

O = probability of Heads

f(x|0) is the Bernoulli probability mass function with parameter 0



Likelihood

(For Discrete Distributions)

P(x | ©): Probability of event x given model ©

Viewed as a function of x (fixed 0), it’s a probability
Eg., S P(x|0) =1
Viewed as a function of O (fixed x), it’s called likelihood

E.g., 20 P(x | ©) can be anything; relative values are the focus.

E.g.,if O = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when © = .6 than 0 = .5

And | what 8 make HHTHH most likely?




Likelihood Function

P(HHTHH | 0):
Probability of HHTHH, &
given P(H) = O:
0 04(1-0)  _ °
02 | 00013  :
05 | 00313 "
08 | 0.0819

0.95 0.0407



Maximum Likelihood
Parameter Estimation

(For Discrete Distributions)

One (of many) approaches to param. est.
Likelihood of (indp) observations x , x., ..., x_

L(zy,@2,...,20 |0) = || flxi|0)
1=1

As a function of 6, what 8 maximizes the
ikelihood of the data actually observed?

Typical approach: 2 1,(z|6) = 0 or 2 log L(Z | ) = 0

(*) In general, (discrete) likelihood is the joint pmf; product form follows from independence



Example |

n independent coin flips, x/, X, ..., Xn; no tails, n; heads,
no+ n; = n; O = probability of heads

0.0015
0.001

L(3317 Lo, ...,Ty ‘ 9) (1 _ 6’)”09”1 0. 0003

ng log(l — 0) + nq log @

0.2 0.4 0.6 0.8 1

log L(x1,x2,...,2p | 0)

0 — — o ni
%1ogL(ijl7ZI/‘27...’xn ‘ 9) E— 1_9 I 9
Setting to zero and solving: Observed fraction of
successes in sample is
é . ni MLE of success
n probability in population

(Also verify it's max, not min, & not better on boundary)



Parameter Estimation

Given: indp samples xy, x2, ..., xn from a
parametric distribution f(x|0), estimate: 0.

E.g.: Given n normal samples,
estimate mean & variance

flz) = ohge(em/es)

0

(1, 0%)




Ex2: | got data; a little birdie tells me
it's normal, and promises 02 = |

- - - ——— - - -
Observed Data

r —



Which is more likely: (a) this!?

U unknown, 02 = |

—-—[—-—-—-—x - — - - -
Observed Data



Which is more likely: (b) or this!?

U unknown, 02 = |

Observed Data



Which is more likely: (c) or this!?

U unknown, 02 = |

ObservEd Data

U



Which is more likely: (c) or this?
U unknown, 02 = |

Looks good by eye, but how do | optimize my estimate of 4 !

Obserde Data

U



Likelihood

(For Continuous Distributions)

Probability of any specific observation x; is zero, so “likelihood = probability” fails.
Instead, as usual, we swap density for pmf: “likelihood” of xy, x, ..., xn is
defined to be their joint density, and given independence of the x;, that’s the
product of their marginal densities. Why it’s sensible:

a) for maximizing likelihood, we really only care about relative likelihoods,
and density captures that

b) it has the desired property that likelihood increases
with better fit to the model

and %

c) if density at x is f{x), for any small 0>0, the probability of a sample within
+0/2 of x is = 0f(x), so density really is capturing probability, and 0 is
constant wrt 0, so it just drops out of d/dO log L(...) = 0.

Otherwise, MLE approach is just like discrete case: get likelihood, % logL(Z|0)=0



EX. 2: z; ~ N(u,0%), 0 =1, punknown

1 2
L(x1,29,...,2,|0) = e~ (#i—0)"/2 siti
(@1, 22 0) 1;[1 Vo
e 1 (iBz — 9)2
In L(x1,x2,...,T,|0) :;—5111(2%) ;

 Len 2, zl0) =S (2 — 0)

40 1y b2y ydn _i:1 ()
And verify it's max, — . | —n8 =0
not min & not better 1

on boundary R n
5 dL/d® = 0 O — (sz) /n:f

Sample mean is MLE of
population mean

U I |
~] O N & W




Ex3:1 got data; a little birdie tells me
it's normal (but does not tell me U, G?)

- - - — - - -
Observed Data

r —



Which is more likely: (a) this?

U, 02 both unknown

e —— HK—20—200K 7 3

Observed Data



Which is more likely: (b) or this!?

U, 02 both unknown

Observed Data .



Which is more likely: (c) or this!?

U, 02 both unknown

ObseIleed Data




Which is more likely: (d) or this!?

U, 02 both unknown

Obsenved Data
U



Which is more likely: (d) or this!?

U, 02 both unknown
Looks good by eye, but how do | optimize my estimates of U & g2 ?

u

Obse;Eed Data



EX . T;~N(u o), u, o both unknown

e in—el 2
In L $1,$2,...,$n|91,92 — ——1In 27‘(’02
— 20
e $i—91
891 Il £L1,L2, y L 1,UV2 - 02
Al — ZCIZZ /n = X
=1

Sample mean is MLE of
population mean, again

1 In general, a problem like this results in 2 equations in 2 unknowns.
Easy in this case, since 0, drops out of the d/00, = 0 equation



Ex. 3, (cont.)

- 1 (iBz — 01)2
In L(xq1,29,...,2,|601,0 = —— In(276
(1, T2 01,0-) ;:1: > (2m03) 20,
o, e 1 2« (:1:2 — (91)2
—— In L e, Tn 01, — | —

s

02

(5:?—1(9%—51)2) /n = §°

Sample variance is MLE of
bopulation variance



Ex. 3, (cont.)

Bias? if Y is sample mean
Y = (21<i<n Xi)/n
then
E[Y] = (2Z1<i<n E[Xi])/n =n Y/n =}

so the MLE is an unbiased estimator of population mean

Similarly, (21 <i<n (Xi-M)2)/n is an unbiased estimator of O2.
Unfortunately, if M is unknown, estimated from the same data, as

. AN2 . . . .
above, 0, = X, """ s a consistent, but biased estimate

of population variance. (An example of overfitting.) Unbiased
estimate Is: .

N (;—01)? —
62 — Zl<i<n — correct




Summary MLE

MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)

Defining the “Likelihood Function” (based on the pmf or pdf of the model) is
often the critical step; the math/algorithms to optimize it are generic

Often simply (d/dO)(log Likelihood(data|0)) = 0
Has the intuitively appealing property that the parameters maximize the likelihood
of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a
sample of NBA stars?) but that is an unlikely event



How to estimate M given data

For this problem, we got a nice, closed

form, solution, allowing calculation of the |,
O that maximize the likelihood of the
observed data.

We're not always so lucky...

3 —)(—)(-x—x—x-x-x—.—x—[—.—
O

bserved Data Y



More Complex Example

This?
Or this?/\/\ _

(A modeling decision, not a math problem...,
but if the later, what math?)



iving Histogram

male and female genetics students, University of Connecticut in 1996

http://mindprod.com/jgloss/histogram.html




Another Real Example:

CpG content of human gene promoters
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Number of promoters
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0

Normalized CpG

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters”™ Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences



Gaussian Mixture Models / Model-based Clustering

B 000-00-0—© 0—000-00-0
Parameters 6
means b1 142
variances 02 02
mixing parameters T o =1—m
P.D.F. \:’L > f(xlm,a%) f(x\.uz,a%)
Oet/?er
| ikelithood T1f($\u170%) +72f($\ﬂ270§>
L(xlam%---73771‘“17/1’270-%70-%77-177-2) No

closed-

2
— H?:l Zj:l 7 (il g, 032‘) form

max:



0.

15

0.

0.




0.15

20

-10

L, —

B o2 = 1.0

~10.2, —10, —9.8  ° o
—0.2, 0, 0.2 Hi S
11.8, 12, 12.2



A What-If Puzzle

Likelihood 0
/_/%
L 2 2
(5817:527 SO 7$n| :u17:u270-170-277_177_2)

[Ty > 7 f (@il 03)
Messy: no closed form solution known for
finding © maximizing L

But what if we
knew the

hidden data!?

o 1 it z; drawn from f;
“iJ = 1 0 otherwise



A Hat Irick

Two slips of paper in a hat:
Pink: 4 = 3, and
Blue: u=7.

You draw one, then (without revealing color or p)
reveal a single sample X ~ Normal(mean u, 02 =1).

You happen to draw X = 6.001.
Dr. Mean says “your slip = 7.” What is P(correct)?

What if X had been 4.9?



density

02 03 04 05

0.0 01

Let “X =~ 6” be a shorthand for 6.001 —§/2 < X < 6.001 +4,/2

A Hat Trick

P(X ~6|u=7)P(p=T1)
P(X =~ 6)

B 0.5P(X =~ 6|u="T)
- 0.5P(X ~6|u=3)+0.5P(X ~6|lu="17)
f(X =6lp="T7)d
f(X=6lp=3)0+ f(X=6)lp="T)5

ol _ R f(X =6lp=T7)
AT == X =6l =8+ X =0 =7

Plp="7X=6)=

Bayes rule

f = normal
density

./

SO




A Hat Trick

o _
o
N _
o
> “ _
n ° o o
- \ ¢ «
()] N
S o
g
-
© | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Alternate View: f = normal

density

Posterior odds = Bayes Factor - Prior odds
Plp=17X=6) f(X=6u=7) 050 0.2422 1 54.8

Plu=3lX=6) f(X=6p=3) 050 0.0044 1 1

l.e., 50:50 prior odds become 54:1| in favor of y=7, given X=6.001
(and would become 3:2 in favor of HU=3, given X=4.9)



Another Hat Irick

Two secret numbers, W« and Mpje
On pink slips, many samples of Normal(,., 02 = 1),
Ditto on blue slips, from Normal(Mp., 02 = |).

Based on |6 of each, how would you “guess” the
secrets (where “success’” means your guess is within
+0.5 of each secret)!?

Roughly how likely is it that you will succeed?



Another Hat Trick (cont.)

Pink/blue = red herrings; separate & independent
Given X, ..., Xi6 ~ N(4, 0%, 0%=|
CalculateY = (X + ... + Xj¢)/16 ~N(?, ?)
E[Y] = U ]
Var(Y) = 160%/16% = 0?16 = 1/16
l.e., Xi's are all ~ N(M, |); Y is~ N(H, I/16)

and since 0.5 = 2 sqrt(1/16), we have:

“Y within £.5 of 4”7 =Y within £2 0 of u” = 95% prob

Note |: Y is a point estimate for W;

Y £2 Oisa95% confidence interval for
(More on this topic later)



100 150

50

Frequency

Histogram of 1000 samples of the average of 16 N(0,1) RVs
Red = N(0,1/16) density

-1.5

-1.0 -0.5 0.0 0.5 1.0

Sample Mean

1.5



Hat Trick 2 (cont.)
Note 2:

What would you do if some of the slips you pulled had
coffee spilled on them, obscuring color?

If they were half way between means of the others!?

If they were on opposite sides of the means of the
others

density

00 01 02 03 04




A What-If Puzzle

Likelithood 0
/_/_
L 2 2
(:Bla'inv I 72771‘ :u171u270-170-277-177-2)

= TIiLy X5y 7 f (il 03)
Messy: no closed form solution known for
finding © maximizing L

But what if we
knew the

hidden data!?

Zij —

1 if x; drawn from f;
0 otherwise



X
B
A

>V

EM as Egg vs Chicken

IF parameters O known, could estimate z;
E.g., [xi— wil/o1> |xi— wol/or=> P[z=1] « P[zo=1] />N

IF z;known, could estimate parameters O

NN

E.g., only points in cluster 2 influence pw,, 02 — e e —

But we know neither; (optimistically) iterate:

E-step: calculate expected z;;, given parameters

M-step: calculate “MLE” of parameters, given E(z;)

Overall, a clever “hill-climbing” strategy



Simple Version:
“Classification EM”

If E[Zz;] < .5, pretend z; = 0; E[z;] > .5, pretend it’s |

: : “K-means
|.e., classify points as component | or 2 clustering.”

Now recalc 0, assuming that partition (standard MLE) |essentially
Then recalc E[Z;], assuming that O

Then re-recalc 0, assuming new E[z;], etc., etc.

“Full EM” is slightly more involved, (to account for
uncertainty in classification) but this is the crux.



Full EM

r;' s are known; @ unknown. Goal is to find MLE 6 of:
L(:Cl, N 17 | 9) (hidden data likelihood)
Would be easy if z;;'s were known, I.e., consider:
L($1, ve ey s R119 <2129+« « 9y 2?2 | (9) (complete data likelihood)
But z;;'s aren’'t known.
Instead, maximize expected likelihood of visible data

E(L(z1,...,Tn, 211,212, --52n2 | 0)),

where expectation is over distribution of hidden data (z;;'s)



NN

The E-step:

Find E(Zij), .e., P(Zij= |)

Assume O known & fixed
A (B): the event that x; was drawn from f; (f2) ()

D: the observed datum x; /Q,P@*y
Expected value of z;; is P(A|D) _F
P(DIA)P(A
Elzi] =P(A|D) = ( }L(l)))( ) Repeat
for
P(D) = P(D|A)P(A)+ P(D|B)P(B) each
L

= fi(xi|01) 11 + fo(x;|02) T

Note: denominator = sum of numerators - i.e. that which normalizes sum to 1 (typical Bayes)



A Hat Trick

Let “X = 6” be a shorthand for 6.001 —§/2 < X < 6.001 + §/2
Pp=17X =6) =1lim P(u="7|X = 6)
0—0

E[Z; pink]=?
P(X ~6lp=T7Pu="1) ’
P e E[Ziplue]=
B 0.5P(X =~ 6|u=7)
- 0.5P(X ~6|u=3)+05P(X ~6|u="7)

f(X — 6"UJ — 7)5 SO f = normal
f(X=6lp=3)0+ f(X=6)|u="7)d" density

iy — A f(X =6lp=T7)
P T == X =6l =8+ S =0l =)

P(p="7X~6)=

m~J




Complete Data
Likelihood

- J 1 itz drawn from f;
"7 1 0 otherwise

Recall:

so, correspondingly,

, - Tlfl (5131 9) if z11 =1 equal, if zj are 0/
Ly, 215 10) = { Tofo(x1 | @) otherwise

Formulas with “if's” are messy; can we blend more smoothly?
Yes, many possibilities. ldea 1:

L(z1,215 | 0) = z11-Tifi(w1 | 0) + 212 - T2 fa(21 | 0)

ldea 2 (Better):
L(a?l,le ‘ 9) — (Tlfl(afl ‘ 9))211 ’ (72f2($1 | 9))'212




M-step:

NN

®* —0 000 —

Find 6 maximizing E(log(Likelihood))

(For simplicity, assume 01 =09 = 0;7 = 79 = 7 = 0.5)

.

n

Ellog L(Z,Z [ 6)]=E | )

'\ _izl

wrt dist of z;

N

1

7

mn
=1

1 2 2 (i — py)°
log T — 5 log(2mo”) — Z Zij L

)

B i 2 (z; — Mj)2
—~ Q20

1 = )2
log T — 5 log(2mo*) EzlE Zij)
J:

Find & maximizing this as before, using E|z;;| found in E-step. Result:

=Y .1 Elzijlei/ > ., Elzij]

(intuit: avg, weighted by subpop prob)



(:b% Hat Trick 2 (cont.)

%0 Note 2: red/blue separation is just like the M-step of EM
if values of the hidden variables (zj) were known.

What if they’re not? E.g., what would you do if some of
the slips you pulled had coffee spilled on them,
obscuring color?

If they were half way between means of the others!?
If they were on opposite sides of the means of the

others

density

00 01 02 03 04




old E’s

M-step:calculating mu’s

— Z?:1E

Zij

“ij.

In words: W is the average of the observed xi’s, weighted by
the probability that x; was sampled from component j.

rOw Suim

avg

Elzii]

0.99

0.98

0.7

0.2

0.03

0.01

2.91

E[zi2]
Xj
E|zi1]xi
Elzi2 |xi

0.01

3.9
0.1

0.02

10
9.8
0.2

0.3
11

7.7
3.3

0.8

19
3.8
15.2

0.97
20

0.6
19.4

0.99

3.09

21

0.2

15
10.66

20.8] 53.98] 19.09

new U’s




2 Component Mixture

01=02=1; t=0.5

mul

-20.00

mu2

6.00

z11

z21

z31

z41

z51

z61

x1 -6
x2 -5
X3 -4
x4 0
x5 4
x6 5
x7 6

z71

5.11E-12
2.61E-23
1.33E-34
9.09E-80
6.19E-125
3.16E-136
1.62E-147

-6.00
0.00

1.00E+00
1.00E+00
9.98E-01
1.52E-08
>./5E-19
1.43E-21
3.53E-24

-5.00
e d o

Essentially converged in 2 iterations

1.00E+00
1.00E+00
1.00E+00
4.11E-03
2.64E-18
4.20E-22
6.69E-26

-4.99
3.75



EM Summary

Fundamentally a maximum likelihood parameter
estimation problem; broader than just Gaussian

Useful if O/1 hidden data, and if analysis would be
more tractable if hidden data z were known

Iterate: .
E-step: estimate E(z) for each z, given O &
M-step: estimate O maximizing E[log likelihood] &

given E[z] [where “E[loglL]” is wrt random z ~ E[z] = p(z=1)]



EM Issues

Under mild assumptions, EM is guaranteed to
increase likelihood with every E-M iteration,
hence will converge.

But it may converge to a local, not global, max.
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often
applied to problems (including clustering,
above) that are NP-hard (so fast alg is unlikely)

Nevertheless, widely used, often effective



Applications

Clustering is a remarkably successful exploratory data
analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it
Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the
visible data

EM is extremely widely used for “hidden-data” problems
Hidden Markov Models — speech recognition, DNA analysis, ...



A “Machine Learning” Example
Handwritten Digit Recognition

L

Given: 10’ unlabeled, scanned images of O /

handwritten digits, say 25 x 25 pixels,

Goal: automatically classify new examples |  me (9
Possible Method: “

5

e ———————

. : . . 625 1 :
Each image is a point in R ; the “ideal” 7, say, is one such
point; model other 7’s as a Gaussian cloud around it

Do EM, as above, but 10 components in 625 dimensions
instead of 2 components in | dimension

“Recognize” a new digit by best fit to those |0 models, i.e.,
basically max E-step probability



